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Fluctuating Hydrodynamics
and Brownian Motion. Il.
Note on the Slip
Boundary Condition
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Previous work by Hauge and Martin-L6f discussing the generalized
Langevin equation for Brownian motion as a contraction from the more
fundamental but still phenomenological description of a particle immersed
in an incompressible fluid governed by fluctuating hydrodynamics with
stick boundary condition is extended to the case of a Brownian particle
with arbitrary shape and with slip boundary condition. The motivation for
this extension is the fact that the latter condition naturally arises in a
treatment of the problem from first principles.
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In a recent paper @ (referred to as I below) Hauge and Martin-Lof discussed
the contraction from the Markovian description of a Brownian particle (B)
immersed in an incompressible fluid governed by fluctuating hydrodynamics,
to the (in general) non-Markovian description in terms of a generalized
Langevin equation [see I, Eq. (59)] for the dynamic variables of B alone. They
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proved: (i) The (time-dependent) friction tensor is symmetric for arbitrary
shape of B. (if) The (nonwhite) spectrum of the noise and the friction tensor
are related by the appropriate fluctuation-dissipation theorem. These state-
ments were proved strictly within the chosen phenomenological framework,
and mechanical time reversibility was not invoked.®

On the other hand, the very restriction to macroscopic reasoning
emphasizes the need for a derivation from first principles. The importance of
a microscopic justification is, in particular, due to the fact that the pheno-
menological theory shows the ratio p/ps (mass density of the fluid/mass per
unit volume of B) to be crucial in determining whether the Langevin equation
can be considered as Markovian to a sufficient approximation. This basic
parameter has not emerged as such from previous work on the microscopic
derivation of the Langevin equation.

Before one embarks on such a program, however, one minor point must
be settled. In the proofs of I the stick boundary condition was used, i.e., both
normal and tangential components of the fluid velocity field were assumed to
coincide with the velocity of B at the surface. In a microscopic theory, how-
ever, one would like to consider the simplest case and describe the interaction
between B and a fluid particle by a potential energy function ®(r — R)
corresponding to a smooth Brownian particle of reasonable shape. But in
any collision governed by ® no tangential forces will appear. The macro-
scopic manifestation of this simple fact is the so-called slip condition:
Tangential stresses vanish at the surface of B. It is the purpose of the present
note to point out that, with slight modifications, the arguments in I carry
over to the case of slip boundary condition.

The boundary condition is used explicitly in I for a single purpose only
[see I, Egs. (60)~(62) and (B.2)], namely the proof of the relation

—J dSu(t)-o(t)en = U(t)-F(@') + Q()-M(t) )
Here u(x, t) and o(x, ¢) are the velocity and stress tensor fields of the fluid,
n(x) is a unit vector normal to, and pointing into, the surface of B at x. The
integration extends over the surface of B. The dynamic variables of B are the
translational and angular velocities U and &, and the force F and the torque
M exerted on B by the fluid are given as

F = —f ds c-n @)

M=—dexxc.n 3)

8 The two levels of reasoning are often mixed; see, e.g., Ref. 2.
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The stick boundary condition reads
u(x, 1) = U@r) + Q@) X x for xe§ )]

and the proof of (1) follows immediately by insertion of (4) into the left-hand
side and appeal to (2) and (3).
The slip condition, on the other hand, reads

u(x, t)-n(x) = [U@) + () X x]-n(x)

Opp = Opg =0

)
(6)

The normal component of (4) is a boundary condition needed already for
nonviscous fluids and is of course also valid with slip. The indices in ¢,; and
o,z refer to a local Cartesian system where 7 denotes the direction parallel to
n and 1 and 2 stand for orthogonal tangential directions.

We note that with slip 6-n = o,,n (¢ is symmetric), and thus only the
normal component u-n is needed on the left of (1). Insertion of (5) then yields
U and L dotted into integrals that are nothing else than the definitions (2) and
(3) with 6+n = o,,n. Thus Eq. (1) is proved to be valid for the case of slip as
well as stick.

The remaining arguments of I can be taken over verbatim and one has
thus proved, on the basis of fluctuating hydrodynamics, the symmetry of the
friction tensor appearing in the generalized Langevin equation [I, Eq. (59)]
for (U, ), and the fluctuation-dissipation theorem relating the auto-
correlation of the random forces to this tensor.

It is curious to note that for the usual “linear combination” of stick
and slip

}for xe S

ui——[U+9XX]i=/30m'

where i denotes a tangential direction and S is a constant, a proof along the
lines presented here does not seem to work. The fact that it does work for
stick (8 — 0) and slip (8 — o) appears to be a result of accidental features
of these limiting cases.
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